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Abstract-A numerical model describing the steady, three-dimensional fluid flow and heat transfer in 
continuous-flow zone electrophoresis is developed to show the influence of gravitation on this process. It 
is capable of predicting undesirable effects, due to natural convection, such as back-flow and inlet and 
outlet disturban~s. Comparison with a simpler two-dimen~on~ model shows that the latter can be used 
to represent flow and heat transfer in the central part of the chamber. The simpler model is used to establish 

a correlation which gives the conditions beyond which back-flow occurs. 

1. INTRODUCTlON 

A WIDE range of separation techniques has been 

developed for fractionating and purifying biological 
substances. Some of them are based on differences 
in biochemical properties, as in the case of affinity 
methods, others on differences in physico-chemical 
properties (size of the molecule, electrical charge). 
Although a few of these processes can be used to 
prepare small quantities of a product, of the order 
of 1 mg, they are generally used only for analytical 
purposes. In comparison with these techniques, the 
process of continuous-flow electrophoresis offers the 
advantage of allowing a continuous preparation or 
pu~fi~tion of biological products, with a production 
rate of about 1 mg h-‘, or even up to 1 g hh’. 

The operating principle is as follows (see Figs. 1 
and 2). The sample containing the species to be sep- 
arated (e.g. a mixture of proteins) is injected, through 
a capillary, into a liquid stream consisting of a buffer 
solution of known properties (pH, electrical con- 
ductivity, viscosity, etc.). This carrier buffer flows in 
the laminar regime between two flat, vertical plates 
forming a channel of constant thickness 22, of length 
X and of width Y. Two electrode compartments, situ- 
ated on either side of this chamber and separated from 
it by membranes, are used to apply a dc. electric fiefd 
across the width of the chamber. The membranes 
allow the electric current to pass while permitting the 
use of a fast-flowing electrode solution to remove the 
gases generated at the electrodes. The components of 
the injected sample are carried down the length of the 
chamber by the carrier flow, and migrate across the 
width of the chamber under the influence of the elec- 
tric field, with a velocity which is proportional to the 
electric field strength and to the mobility of the species. 
This mobility depends on the electric charge of the 
molecule, on its size, on the viscosity of the sur- 
rounding medium, etc. The liquid stream containing 

the different species is collected at the outlet of the 
apparatus in a number of fractions, which correspond 
to the different mobilities. 

Applying an electric field gives rise to various 
phenomena in the chamber. The passage of the electric 
current through the carrier buffer causes a diffuse 
generation of heat by the Joule effect. To prevent a 
rise in temperature of the solution along the length of 
the chamber, the walls are cooled by a fast-flowing 
liquid which can be considered as being at the constant 
temperature T,*. The temperature of the buffer cir- 
culating in the electrode compartments T,* can also 
be adjusted to reduce heating due to the resistance 
of the membranes. Furthermore, the passage of the 
electric current is made possible by the movement of 
the ions in the buffer. However, the transport numbers 
of these ions in the solution and in the membranes are 
different; as a result, concentration gradients appear 
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~ 
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FIG. 1. Principle of continuous-flow electrophoresis : I and 
2, two proteins with different mobilities. 
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NOMENCLATURE 

dimensionless factor (equation (15a)) 
buffer concentration 
heat capacity 
thickness 
electric field strength 
gravity vector 
heat transfer coefficient 
thermal conductivity 
dimensionless pressure 
dimensionless heat flux 
area resistance of the membrane 
electrical resistance 
Joule heat source term 
dimensionless temperature 
inlet temperature of the buffer 
potential difference applied to the 
electrodes 
mean velocity 

U, v, w dimensionless velocity in the x-, y-, 
z-direction 

V velocity vector 
X, y, z dimensionless coordinates 
x length of the separation chamber 
Y width of the separation chamber 

Z half-thickness of the separation chamber. 

Greek symbols 
E dimensionless thickness of the 

polarization layer 

p buffer viscosity 

P buffer density 
g buffer electrical conductivity. 

Subscripts 
0 buffer, mean value 
C cooling compartment 
e electrode compartment 
m membrane 
W wall. 

Superscript 
* dimensioned variable (for space, velocity, 

pressure and temperature). 

Dimensionless numbers 
Gr Grashof number, p,,gApZ3/pg 
Pe Peclet number, pOC, UoZ/k, 
Re Reynolds number, poUoZ/~o. 

1 g 

FIG. 2. Axes used in the numerical model: 1, separation 
chamber; 2, membrane; 3, coofed wall; 4, electrode com- 

partment. 

near the membrane surfaces. This is known as the 
membrane ‘polarization’ phenomenon ; it leads on the 
one hand to a density protile having a direct influence 
on the flow, and on the other hand to an electrical 

conductivity profile, which implies a variation in the 
heat source term and a modification of the tem- 
perature profiles. In order to limit the effect of these 
phenomena, which can cause natural convection in 
addition to the desired forced convection of the 
carrier, and for reasons of hydrodynamic stability, the 
thickness 22 of the chamber is in general very small 
compared with its other dimensions. The protie of 
the axial velocity u (in a y-z plane perpendicular to 
the flow) has a parabolic form in the z-direction. This 
means that the residence times of the species in the 
apparatus vary across the thickness of the chamber. 
Molecules having the same mobilities and situated at 
different values of z, will migrate at the same speed in 
the y-direction but for different times. Also, the walls 
of the chamber carry surface charges that are neu- 
tralized by ions in the solution. This mobile layer 
of ions, extremely thin compared with the chamber 
thickness, is set in motion by the electric field ; this 
creates a slip velocity, the ‘electro-osmotic’ velocity, 
on the walls of the cell in the direction of the field. As 
the sides of the chamber are closed off by the water- 
tight membranes, there is a return flow of liquid along 
the central x-y plane of the cell. In this way, a Iateral 
velocity, in the y-z plane, is set up also having a 
parabolic profile in the z-direction. These two 
phenomena, the distribution of residence times and 
the electro-osmotic flow, cause a deformation of the 
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injected sample stream : its cross-section, initially cir- 
cular at the inlet, takes on a crescent form. 

Several simplified mathematical models for the flow 
and heat transfer have been developed in recent years. 
The simple one-dimensional model only takes into 
account the variations in velocity and temperature 
across the chamber thickness. The Navier-Stokes 
equation and the heat transfer equation can then be 
integrated analytically to give the velocity and tem- 
perature profiles, e.g. to find the cooling temperature 
to be used. The temperature profile obtained only has 
an effect on the flow under the most extreme operating 
conditions, i.e. at high field strengths, in thick cham- 
bers, conditions well beyond those for which the mem- 
brane polarization begins to become important. Sev- 
eral two-dimensional models have also been 
developed in which velocity variations in the x-direc- 
tion are neglected [l-3]. They take into account the 
electro-osmotic flow and the coupling between the 
heat transfer and the axial flow. The polarization 
phenomenon and the flow variations at the inlet and 
outlet of the cell are neglected. 

Experimental observations performed in our lab- 
oratory have shown that under certain conditions the 
stream of injected sample deviates from its initial 
straight trajectory ; this can only be explained by vari- 
ations of the flow field in the x-direction. It shows the 
importance of natural convection, particularly that 
due to the polarization layers. By upsetting the flow 
in the cell, it compromises the quality of the 
separation. 

The use of this process in microgravity has been 
envisaged. It would thus be freed of the natural con- 
vection effects which limit its operating conditions 
on earth. Such a treatment might indeed be worth 
considering in the case of some very expensive bio- 
logical products. However, even in such circum- 
stances, if one is to justify operation in microgravity, 
a clear knowledge of its advantages is required. The 
aim of the present work is to show the principal effects 
of gravity on this process and so more clearly define 
the limits imposed on it by earth-based operation. 

A computer code in which the three-dimensional 
and coupled Navier-Stokes and heat transfer equa- 
tions are solved has been developed. Combined with 
a code for calculating the transfer of the sample sub- 
stances under the influence of the flow field, electro- 
phoretic migration and molecular diffusion, it is poss- 
ible to compare its predictions with experimental 
observations of protein separation. Furthermore, a 
study of the calculated velocity fields makes it possible 
to define the limiting operating conditions which can 
be used on earth. In a microgravity environment, the 
limits are quite different and are essentially related to 
the capacity of the cooling system and to the overall 
energy consumption of the device. This code can also 
be used for designing the apparatus so as to find the 
optimum size of the cell to suit the aim which has been 
fixed, i.e. the desired compromise between production 
rate and purity. 

2. MATHEMATICAL MODEL 

2.1. Navier-Stokes and heat transfer equations 
As the equipment is intended for continuous pro- 

duction, the equations will be used in their steady- 
state form. The system of axes is defined in Fig. 2. We 
shall make the following assumptions : 

(i) the carrier buffer is a Newtonian fluid, 
(ii) the temperature differences are small, so the 

viscosity and the various thermal conductivities can 
be considered as constant, 

(iii) non-uniformities in density, due to variations 
in temperature and concentration are only taken into 
account in the source term of the momentum equa- 
tion, 

(iv) the variations in electrical conductivity, 
however, are entirely taken into account, 

(v) the viscous dissipation of heat is neglected, 
(vi) the lines of electrical current are parallel to the 

y-axis. 

After adopting the following dimensionless vari- 
ables : 

1 
f&g 

0 

p = p*-p,gx* 

POG 

(14 

(lb) 

(14 

k, T*-TO 
T=FT 

0 II 

and writing the Reynolds, Peclet and Grashof num- 
bers in the following forms : 

ZUOPO 
Re = ~ 

PO 

W 

ZCpOPo uo 
Pe= k 

0 

(2b) 

& = p Z3Pb 

PO 7 
(2c) 

the Navier-Stokes and heat transfer equations can be 
written in the steady state as follows : 

div (V) = 0 (3) 

V-grad V = -grad P+ k div grad I’+ $ (4) 

V- grad T = A div grad T+ (5) 

2.2. Boundary conditions for the velocity 
(a) At the entrance to the cell (x = 0), the velocity 

component u is given as a fully developed laminar 
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flow, i.e. 

au 
-- = 0 
ax 

v = 0 and w = 0 and the density is uniform 

The momentum equations are then reduced to the 
following : 

(6) 

ap ap 
-_=-_=o 
ay aZ . 

Thus P is a function of x only and the left-hand side 
of the first equation is only a function of y and z. In 
this equation, therefore, a function of y and z is set 
equal to a function of x ; as these are independent 
variables, each of the two terms is equal to a constant 
and we obtain 

(7) 

The other velocity components are zero 

v=w=o. 

(b) At the outlet of the cell (x = X/Z), the liquid is 
drawn off at the same rate by all the tubes of the 
fraction collector. This is represented by 

u = constant, and v = w = 0. 

(c) The membranes at y = 0 and Y/Z are imper- 
meable to water; this leads to 

u=v=w=o. 

(d) On the walls of the cell (z = l), only the v 
component is non-zero. It is equal to the electro- 
osmotic slip velocity, i.e. 

u=w=o 

v = v,,. 

(e) On the central plane of the cell (z = 0), the 
symmetry condition implies that 

2.3. Boundary conditions for the temperature 
The limiting conditions for the temperature are 

rather more complex, as they represent the cooling via 
the walls and via the membranes, as well as the Joule 
heating within the membranes. 

(a) At the inlet to the cell (at x = 0), the temperature 
is uniformly equal to T,, thus 

T= 0. 

(b) The walls of the cell (at z = l), of thickness eW 

4 I I I, 

.? I 0 -I 

cooiing Wall separation 
compartment chamber 

FIG. 3. Boundary condition for temperature at the wall. 

faces by a liquid at the constant temperature T, (Fig. 
3). If h, is the heat-transfer coefficient at the interface 
between the wall and the cooling compartment, then 
the equality of the dimensionless heat fluxes at the 
two interfaces of the wall may be written as 

Eliminating T,, from these expressions, we obtain the 
desired relationship 

1 ar 
- (-) = 
Pe aZ w je koc~~;kwj (Tw - Tc). (8) 

(c) The membranes (at y = 0 and Y/Z), of thickness 
e, and thermal conductivity k,, are subjected to heat 
generation from a Joule source s, (Fig. 4). The solu- 

T e 

e m 
4 * 

0 ‘; 
electrode membrane separation 

compartment chamber 

FIG. 4. Boundary condition for temperature at the mem- 
and thermal conductivity k,, are cooled on their outer brane. 
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tion circulating in the electrode compartments is at a 
constant temperature T,*, and the heat-transfer 
coefficient at the membrane surface in the electrode 
compartment is h,. The heat-transfer equation for the 
membrane may be written as 

1 k, a*T 
--y+ 
Pe k, ay 

The boundary conditions for this equation represent 
the conservation of heat flux at the membrane-carrier 
solution interface 

and at the membrane-electrode solution interface 

Integrating the heat-transfer equation for the mem- 
brane and eliminating the temperature T,,, we obtain 
the expression for the heat flux at the membrane- 
carrier buffer interface 

A($)“, = ;[k,,(<;~k,,,)(Tm-Te) 

smem 
- u&(Zh,e, + k,,,) 

r+ +k_]]. (9) 

(d) In the central plane (at z = 0), symmetry implies 
that 

I,\ aT = 0. 
\az/,=o 

2.4. Joule heat source term 
The source term in the heat-transfer equation takes 

into account the heat generated in the bulk solution 
by the Joule effect. We shall make the following 
assumptions : 

(i) the lines of electric current are parallel to they- 
axis, 

(ii) U is the potential difference applied to the elec- 
trodes, 

(iii) the electrical resistance of the electrode com- 
partments can be neglected, 

(iv) r, is the area resistance of the membranes 

(Q m*), 
(v) QXYZ, the electrical conductivity at the point (x, 

y, z), is a function of the temperature and of the ion 
concentration at this point. 

The current varies with x and z. The current density 
can be expressed in the form 

1 u 
lx2 = KZ R,, 

where Rx, is the electrical resistance of a volume 
element of cross-section AxAz, extending from one 

membrane to the other 

Rx, = 

For the current passing through the volume element 
AxAyAz the following expression is found : 

I,, = AxAz 
u 

s 

’ dy 

2rrn+ 0 ig 

The rate of energy dissipation per unit volume of 
solution can then be written as 

s= (10) 

In the same way the expression for the heat source in 
the membrane is obtained as 

s, = (11) 

2.5. Numerical solution 
The numerical integration of the system of differ- 

ential equations was performed by a finite-difference 
method, derived from the SIMPLE algorithm (semi- 
implicit method for pressure-linked equations) 
developed by Patankar [4]. The grid used is of the 
MAC (marker-and-cell) type, in which the points 
where the three velocity components, u, v and w, are 
defined are displaced by a half step from the points 
where the other variables (pressure, temperature, den- 
sity, conductivity) are defined. The equations are dis- 
cretized on this grid following the hybrid scheme pro- 
posed by Patankar ; in this scheme, diffusion- 
convection terms are discretized using a combination 
of upwind and centred differences dependent on the 
local velocity values. This avoids numerical diffusion 
problems which can arise for certain values of the 
Reynolds and Grashof numbers. 

The discretization of the x-direction momentum 
equation leads to an equation of the following type 
for each point p of the grid (Fig. 5) : 

qu, = 4u”+aSuS+4uC+aWuW 

+ atut + abub + 

Pp- PE Gr, 
--+Re’. (12) Ax 

An equation of the same type is obtained for the 
components v and w, as well as for the temperature. 

The principle of the solution method consists in 
starting from an estimated pressure distribution P*. 
The momentum and heat equations, equations (4) 
and (5), are solved on the basis of P*, which gives V* 
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FIG. 

control volume 

5. Discretization cell for the x-direction momentum 
equation. 

and T*. The divergence of the velocity field V* is non- 

zero. One then considers the velocity corrections V 
and the pressure corrections P’ such that the velocity 
field V = Y* + V’, corresponding to the pressure dis- 
tribution P = P*+P’, satisfies the continuity equa- 
tion (3). By subtracting the momentum equation for 
V and P from the momentum equation for V* and 

P*, the following relating V’ and P’ is obtained, in 
the form for the x component : 

At this point, Patankar recommends neglecting the 
velocity corrections at the neighbouring points ; this 

means that, once the pressure corrections have been 
calculated, the field V’ can be obtained explicitly and 

used to correct the velocities by putting V = V* + V’. 
In our case, because of the peculiar geometry of the 
cell (aspect ratio of the type Z c Y CC X) and because 
of the very low Reynolds numbers (l-5), it was found 
to be necessary not to neglect these terms if con- 
vergence was to be achieved. A pressure-correction 

equation can be obtained by considering the dis- 
cretization coefficients as constant. By taking the 
divergence of the equation relating P’ to V’ and by 

writing 

div (V) = div (V*) + div ( V’) = 0 

we obtain an equation, written for point P, relating 
the pressure corrections to the value of the divergence 
of v* 

a& = a,P’,+a,P~+a,P’,+a,PI,+a,P~ 

+a&--div (V*),+$‘$div (V*)nb. (14) 
P 

The solution of the system represented by this 
equation, written for each point of the grid, leads 
to a field of pressure corrections P’. The pressure 
distribution P = P*+P’ constitutes a new estimate 

P*, leading to a new field V* closer to the continuity 
requirement. In this way an iterative procedure has 
been set up which can be summarized by the algorithm 
in Fig. 6. 

It should be noted that the approximation intro- 
duced to arrive at equation (14) has no influence on 
the final solution. Once the field V* satisfies the con- 
tinuity condition, equation (14) allows the particular 
solution P’ = 0 at each point on the grid. 

I estimate P*, v* and T* I 

solve momsntum equations 
to findV* I 

Isolve pre;?: equation1 

FIG. 6. Algorithm used in the numerical model 



3.1. Influence of heat transfer alone 

3. RESULTS 

In order to prevent Joule heating from raising the 
temperature of the carrier buffer as it flows through 
the cell, the walls of the cell, as was previously 
explained, are cooled by a liquid of constant tem- 
perature Ty. We shall now consider that T,* is chosen 
such that the overall temperature difference in the x- 
direction, from the inlet to the outlet, is zero. Insta- 
bilities due to density gradients in the flow direction 
will not be considered [5]. 

C(Y) = co 

forc<Y<i--E (17b) 

c(y) = c,+(c,-co) ( l-sin 
7c( Y/Z- 1) 

2E > 

for:---ECy<g. (17c) 

The cooling via the walls gives rise to a temperature 
gradient in the z-direction. The effects due to this 
gradient, previously studied using one-dimensional [6] 
and two-dimensional models [l-3] are confirmed by 
the three-dimensional model. It disturbs the almost 
parabolic profile in the z-direction in the following 
way : 

Here E is the thickness of the polarization layers, 
dimensionless in relation to Z. Empirical correlations 
are used to represent the variations in density and 
electrical conductivity of the tris-borate buffer with 
concentration and temperature. 

with 

The polarization layers thus have a twofold influ- 
ence on the flow pattern : firstly a direct effect due to 
concentration-related density differences, secondly an 
indirect effect due to variations in conductivity, caus- 

u(z)=~(1-~~)[;4g(r’-~)+1] (15a) 
ing temperature differences, which in turn produce 
additional density variations. We begin by considering 
the first, direct influence. An example of a calculated 
flow map is shown in Figs. 7 and 8 ; this corresponds 

Wb) to the case where both membranes are of the same 
polarity (e.g. both cation-exchange). This means that 
the buffer solution becomes more concentrated on one 
side of the chamber and is depleted in ions on the 
other. The disturbances in the flow profile near the 
membranes produce compensating flows at the inlet 
and outlet of the chamber, and thus cause the sample 
stream to deviate (Fig. 9). 

Alterations in the performance of the process due 
to this phenomenon (changes in the way the crescent 
deformation varies with mobility) begin to appear 
only for intense electric fields in thick chambers (about 
5000 V m-’ in 3 mm thick chambers). Instabilities 
arise only at even higher field strengths (about 20 000 
V m- ‘), causing back-flows in the centre for down- 
ward flows, near the walls for upward flows. With 3.3. Flow stability with polarization 
the membranes and the buffers used at present, the 
disturbances induced by the polarization layers 
develop under much milder conditions, so we shall 
now concentrate on them. 

3.2. Influence of the polarization layers 
The development of the polarization layers near the 

membranes is a complex phenomenon depending on 
the buffer and membrane properties, on the electrical 
current, on the flow rate, etc. Providing a correct 
representation of this phenomenon is a considerable 
task and is beyond the scope of the present work. It 
is known that these layers grow rapidly in thickness 
near the inlet of the channel, then grow much more 
slowly. We shall assume for the sake of simplicity that 
the concentration profiles are invariant with x and 
with z and have a given form and thickness in the y- 
direction 

Flow maps have been calculated without taking 
into account the coupling with heat transfer; they are 
for a chamber 60 cm long, 6 cm wide and of variable 
thickness 22, for different values of c, and of the 
mean velocity Uo. Profiles of the u velocity component 
in the central y-z plane at x = 30 cm are shown in 
Figs. l&13. Examining the overall velocity field (Fig. 
7), it can be seen that these profiles, for reasonable 
electric fields (< 10 000 V m- ‘), are independent of 
the inlet and outlet effects, particularly the com- 
pensating movements, as well as the electro-osmotic 
motion. It can then be considered that these central 
velocity profiles can be calculated using a two-dimen- 
sional equation in which the gradients in the x-direc- 
tion are neglected as well as the advection terms [ 1] 

c =f (Y). (16) 

Measurements made at the outlet of the chamber have 
led us to consider the following function for the buffer 
concentration : 

$$+$$=&s. (18) 

For the same reasons as those invoked in the dis- 
cussion of the inlet flow field (Section 2.2(a)), we 
arrive at the following relationship, cf. equation (7) : 

azu a% -i+ii;‘=“_gg. 
ay (19) 

The dimensionless velocity profile obtained by solving 
forO<y<E (17a) this equation thus depends on the local values of 

c(Y) = c,+(c,-co) l-sin% 
( > 
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FIG. 13. Velocity protile for u at the mid-length of the cell for two membranes of different polarities, 
upflow. 

Gr/Re, and so on Ap,, E and the function f, as well The function hi arises from the solution to equation 
as on the aspect ratio Y/Z. Moreover, it can be ex- (20), while the function h2 comes from the solution to 
pressed as the sum of the profiles which are solutions equation (21). The condition for a zero gradient at 
of the two following partial differential equations : the membrane then becomes 

(i) the equation giving the forced-convection 
profile, a function of Y/Z only (23) 

a2u, ; a2w _ c; 

ay2 az2 

(ii) the natural-convection equation, whose solu- 
tion depends on Gr,,,/Re, E, on the function A as well 
as on Y/Z 

ah2 ah2 WY) 
ayZ+==-Re. (21) 

It is important to define conditions which will give 
rise to a back-flow, as this can lead to the formation 
of remixing zones which would impair the separation 
process. The limiting condition for the appearance of 
a back-flow is 

au 0 ay+= 0. 

The function h, has been evaluated, using the function 
f defined by equations (17), for different values of 
Y/Z and E. Small variations of h3 with the aspect ratio 
Y/Z are observed. The values of Gr,JRe giving a zero 
gradient have been plotted as a function of E, for two 
extreme values of Y/Z (Fig. 14). The insets in this 
figure show the types of velocity protile which appear 
near the membranes for different values of Gr,/Re. 

From this curve, given the dimensions of the 
chamber (width, thickness) and the operating con- 
ditions (mean flow velocity, buffer viscosity, etc.), the 
values of Ap,,, and E can be determined beyond which 
a back-flow will occur. The values of Ap,,, and E can 
be related to a value of the electric field, after a series 
of measurements with the buffer, the pH and the mem- 
branes previously chosen. 

Now this gradient can be written in the form 

~~~=.=h,(~)+h,(~,~,&,f). (22) 

3.4. The influence ofpolarization layers on heat transfer 
We have seen that the polarization layers lead to a 

conductivity profile in the y-direction. This causes 



2472 N, and M. J. CLIFTON 

FIG. 14. As a function of E, the value of Gr/Re at the membrane leading to a zero-gradient for u in the y- 
direction : 1, increasing velocity in the polarization layer; 2, Poiseuille flow ; 3, limiting condition before 

back-flow occurs ; 4, polarization layer leading to back-flow (0, Y/Z = 26.7 ; 0, Y/Z = 107). 

non-uniformities in the Joule heat source term in the 
zones near the membranes. Several cases can be envis- 
aged depending on the buffer and the membranes 
used. With two cation-exchange membranes, the vari- 
ations in electrical conductivity lead to a temperature 
profile such as that shown in Fig. 15. 

Generally speaking, if the buffer used is a low con- 
ductivity one, such as is used normally in electro- 
phoresis, and if the temperature gradient in the flow 
direction is small, then the variations in concentration 
of the buffer species have a greater effect on the density 
by their direct influence than by their effect on the 
temperature via the conductivity. The two types of 
influence can, in some rare situations, act in opposite 
directions but in most cases a drop in buffer con- 
centration lowers both the density and the con- 
ductivity (thus causing greater heating), so the two 
effects act in the same sense. There is, in all cases, a 
certain heating up of the solution near the chamber 
sides due to the resistance of the two membranes. The 
influence of these heat-transfer effects can only be 
obtained by a complete three-dimensional solution of 
the system of equations, such as our code is capable 
of producing. This calculation makes it possible, in 
particular, to adjust the temperatures of the cooling 
liquid but also of the electrode solutions so as to 

minimize natural convection, especially that due to 
the presence of polarization layers. 

4. CONCLUSION 

From the experience acquired with a full three- 
dimensional model for the flow and heat transfer in a 
continuous-flow electrophoresis chamber, there are 
several conclusions which can be drawn. On the one 
hand it was found that the complete model is capable 
of predicting behaviour, such as the non-linear sample 
trajectories, observed experimentally but not pre- 
dictable by the earlier, simpler models. On the other 
hand, it was also confirmed that a two-dimensional 
model could be used as a good guide to the flow 
behaviour over the major part of the chamber length. 
The two-dimensional version of the model was used 
to find a correlation which can be used to predict con- 
ditions under which back-flow is avoided. To apply 
this correlation with precision, an experimental study 
of the membrane polarization effects would be necess- 
ary, but from the information already available, it is 
clear that the microgravity environment can offer real 
advantages in improving the resolution of electro- 
phoresis separations. The chambers at present used 
on earth are in fact operating quite close to the limits 
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FIG. 15. Temperature distribution in the .z = 0 plane in a cell with two cation-exchange membranes. 

imposed by requirements of flow stability and repro- 2. 
ducibility. Other studies [7] have shown that improve- 
ments in resolution can be obtained, for example, by 
using thicker chambers, but under the conditions of 3, 
the earth’s gravity, the flow regime would no longer 
be satisfactory. 
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MODELISATION TRIDIMENSIONNELLE DES ECOULEMENTS ET DU TRANSFERT 
THERMIQUE COUPLES EN ELECTROPHORESE A ECOULEMENT CONTINU 

R&sum&--Un modkle num&ique qui d&r&, en trois dimensions et B l’btat stationnaire, l’hydrodynamique 
et le transfert thermique dans l’Blectrophor&se de zone g tcoulement continu a BtB d6velopp6 en vue de 
montrer l’influence de la gravite sur ce pro&d&. Le modkle rend compte d’effets nkfastes, dus B la convection 
naturelle, tels que les courants de retour et les perturbations d’entrke et de sortie. La comparaison avec un 
modkle bi-dimensionnel plus simple montre que ce demier peut servir pour representer l%coulement et le 
transfert de chaleur dans la partie centrale de la chambre. Le mod&le bi-dimensionnel a permis d’6tablir 

une corr&lation qui prkvoit les conditions au deli desquelles se forment des courants de retour. 
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DREIDIMENSIONALE MODELLIERUNG VON STROMUNGSFELD UND 
WARMEUBERGANG BEI DER ELEKTROPHORESE IN KONTINUIERLICHER STRGMUNG 

Zusammenfassung-Ein numerisches Model1 zur Beschreibung der stationaren dreidimensionalen Strii- 
mung und des Wirmehbergangs in einer kontinuierlich durchstriimten Elektrophorese wird entwickelt, 
urn den Einflug der Schwerkraft auf diesen Vorgang zu zeigen. Das Model1 ist in der Lage, unerwiinschte 
Einfliisse aufgrund der natiirlichen Konvektion (wie Riickstriimung und Stiirungen durch Ein- und Auslag) 
vorauszuberechnen. Der Vergleich mit einem einfacheren zweidimensionalen Model1 zeigt, daB dieses dazu 
geeignet ist, Stromung und Wlrmeiibergang im Zentrum der Kammer darzustellen. Das einfachere Model1 
wird verwendet, urn eine Beziehung fur Betriebsbedingungen aufzustellen, bei denen keine Riickstriimung 

auftritt. 

TPEXMEPHOE MO~EJIHPOBAHHE B3AHMOCBII3AHHbIX HOJDI TE9EHM5I M 
TEHJIOHEPEHOCA HP&i 3JIEKTPO@OPE3E B HOTOKE 

AunoTurucl_Pa3pa6o’raHa %%CJteHHaR MOJJeJIb, OnBCbIBaK)4an CTauHoHapHoe TpexMepHoe TeveHHe 

mmK0crH u TennonepeHoc npH 3neKTpo@opese c uenbm onpenenemn B~H~HH~ rpaeuTaum Ha uccne- 

A)'Wblfi IIpOUeCC. Monenb lI03BOJIneT IlpeACKa3blBaTb TaKBe HeXCeJlaTeJIbHbIe 3+$hXTbl, Bbl3BaHHbIe 

eCTeCTBeHH0i-i KOHBeKqHeii, KaK, HallpHMep, o6paTHMe TeSeHIIn, a TaKZiKe B03MyUeHHn Ha BXOAe B 

BbIXOne.CpaBHeH&ie c 6onee r,pOCTOf, AByMepHOii MOneJlbH) IIOKa3bIBaeT,4TO IIOcJIeAHnn MOxeT HclTO- 

nb30BaTbCn mn 0mcaHm TeqeHm A TennonepeHoca B ueHTpa.nbHoii qacra Kahtepbr. YnpoueHHan 

Monenb npxMeHneTcn mn nonyqeHsn o6o6weHHoro sbrpaxemin, onpenennlouero ycnoem BO~HHKHO- 

BeHAnIIpOTBBOTOKB. 


